Terminology in Integrated Circuits and Semiconductor Manufacturing

ATA 55th Annual Conference Chicago, IL

> Di Wu Leidos

November 7, 2014

A Little About Me

- Graduated from the University of Rochester with BS and MS in Electrical Engineering
- Worked as an Integrated Circuit Development Engineer at Delphi from 1995 to 2009
- Worked as a Freelance Chinese Language Teacher/Translator/Interpreter from 2004 to 2010
- Worked as a Chinese Linguist for Government Contractors in the DC Area since 2010

Definition of Semiconductor

A solid substance that has a conductivity between that of an insulator and that of most metals, either due to the addition of an impurity or because of temperature effects. Devices made of semiconductors, notably silicon, are essential components of most electronic circuits.

- Oxford Dictionary

- \$249 Billion Industry Today
- USA, South Korea, Japan, Taiwan, Singapore, and European Union
- The role of the industry as technology enabler. The semiconductor industry is widely recognized as a key driver for economic growth in its role as a multiple lever and technology enabler for the whole electronics value chain. In other words, from a worldwide base semiconductor market of \$213 billion in 2004, the industry enables the generation of some \$1,200 billion in electronic systems business and \$5,000 billion in services, representing close to 10% of world GDP.

2013 Top 20 Semiconductor Sales Leaders Forecast (\$M, Including Foundries)

2013F	2012	Company	Headquarters	2012 Tot	1Q13 Tot	2Q13 Tot	3Q13 Tot	4Q13F	2013F	2013F/2012
Rank	Rank			Semi	Semi	Semi	Semi	Tot Semi	Tot Semi	% Change
1	1	Intel	U.S.	49,114	11,555	11,785	12,366	12,615	48,321	-2%
2	2	Samsung	South Korea	32,251	7,946	7,769	8,805	9,070	33,590	4%
3	3	TSMC*	Taiwan	16,951	4,460	5,152	5,377	4,815	19,804	17%
4	4	Qualcomm**	U.S.	13,177	3,916	4,222	4,457	4,550	17,145	30%
5	8	SK Hynix	South Korea	9,057	2,577	3,521	3,692	3,250	13,040	44%
- 6	6	Toshiba	Japan	11,217	2,938	2,868	3,356	3,035	12,197	9%
7	5	TI	U.S.	12,081	2,718	2,872	3,064	2,820	11,474	-5%
8	10	Micron	U.S.	8,002	2,158	2,493	2,900	3,000	10,551	32%
9	9	ST	Europe	8,364	1,994	2,033	2,077	2,080	8,184	-2%
10	11	Broadcom**	U.S.	7,793	1,954	2,035	2,146	1,975	8,110	4%
11	7	Renesas	Japan	9,314	1,886	1,920	2,101	1,920	7,827	-16%
12	14	Infineon	Europe	4,928	1,208	1,327	1,390	1,340	5,265	7%
13	13	AMD**	U.S.	5,422	1,088	1,161	1,461	1,534	5,244	-3%
14	12	Sony	Japan	5,709	1,247	1,144	1,203	1,295	4,889	-14%
15	15	NXP	Europe	4,325	1,085	1,188	1,249	1,265	4,787	11%
16	22	MediaTek**	Taiwan	3,366	817	1,115	1,308	1,275	4,515	34%
17	17	GlobalFoundries*	U.S.	4,013	946	1,020	1,125	1,170	4,261	6%
18	19	Freescale	U.S.	3,803	925	987	1,030	1,000	3,942	4%
19	20	UMC*	Taiwan	3,730	898	1,016	1,060	945	3,919	5%
20	18	Nvidia**	U.S.	3,965	939	903	1,005	905	3,752	-5%
Top 20 Total				216,582	53,255	56,531	61,172	59,859	230,817	7%
	*Eaun	4								

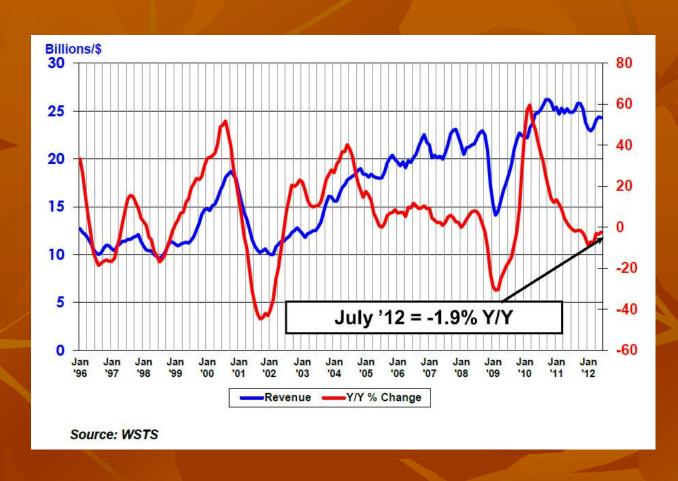
*Foundry **Fabless Source: IC Insights' Strategic Reviews Database

2013F Top 20 Semiconductor Sales Leaders Ranked by Growth (\$M, Including Foundries)

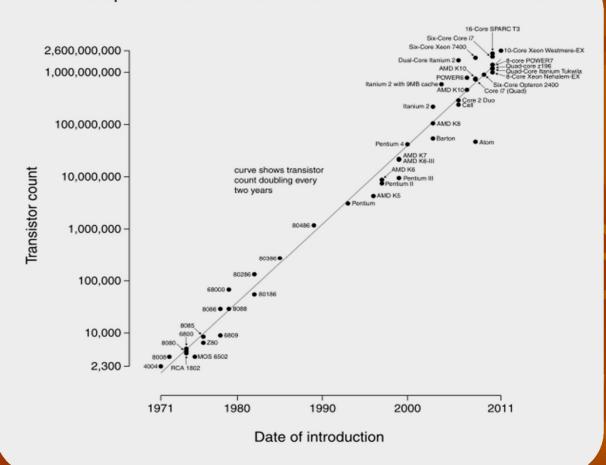
2013F	Company	Headquarters				3Q13 Tot		2013F	2013F/2012
Rank	- сорау		Semi	Semi	Semi	Semi	Tot Semi	Tot Semi	% Change
1	SK Hynix	South Korea	9,057	2,577	3,521	3,692	3,250	13,040	44%
2	MediaTek**	Taiwan	3,366	817	1,115	1,308	1,275	4,515	34%
3	Micron	U.S.	8,002	2,158	2,493	2,900	3,000	10,551	32%
4	Qualcomm**	U.S.	13,177	3,916	4,222	4,457	4,550	17,145	30%
5	TSMC*	Taiwan	16,951	4,460	5,152	5,377	4,815	19,804	17%
6	NXP	Europe	4,325	1,085	1,188	1,249	1,265	4,787	11%
7	Toshiba	Japan	11,217	2,938	2,868	3,356	3,035	12,197	9%
8	Infineon	Europe	4,928	1,208	1,327	1,390	1,340	5,265	7%
9	GlobalFoundries*	U.S.	4,013	946	1,020	1,125	1,170	4,261	6%
10	UMC*	Taiwan	3,730	898	1,016	1,060	945	3,919	5%
11	Samsung	South Korea	32,251	7,946	7,769	8,805	9,070	33,590	4%
12	Broadcom**	U.S.	7,793	1,954	2,035	2,146	1,975	8,110	4%
13	Freescale	U.S.	3,803	925	987	1,030	1,000	3,942	4%
14	Intel	U.S.	49,114	11,555	11,785	12,366	12,615	48,321	-2%
15	ST	Europe	8,364	1,994	2,033	2,077	2,080	8,184	-2%
16	AMD**	U.S.	5,422	1,088	1,161	1,461	1,534	5,244	-3%
17	TI	U.S.	12,081	2,718	2,872	3,064	2,820	11,474	-5%
18	Nvidia**	U.S.	3,965	939	903	1,005	905	3,752	-5%
19	Sony	Japan	5,709	1,247	1,144	1,203	1,295	4,889	-14%
20	Renesas	Japan	9,314	1,886	1,920	2,101	1,920	7,827	-16%
*Foundation **Foliane									

*Foundry **Fabless

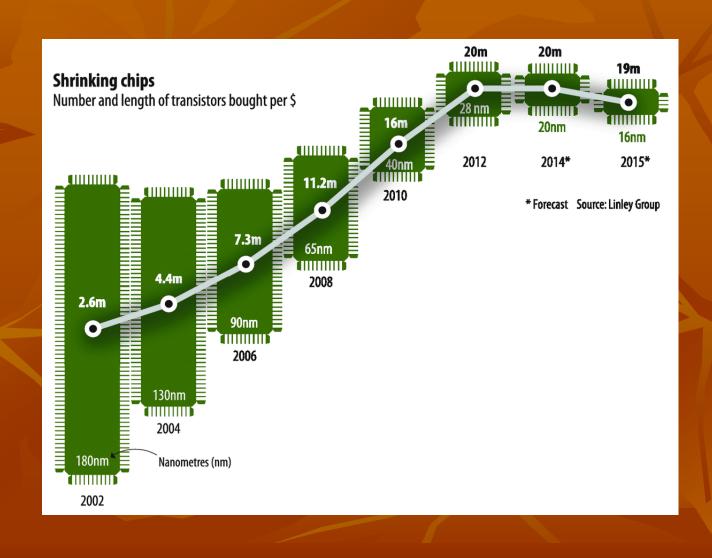
Source: IC Insights' Strategic Reviews Database



Semiconductor Industry Revenue



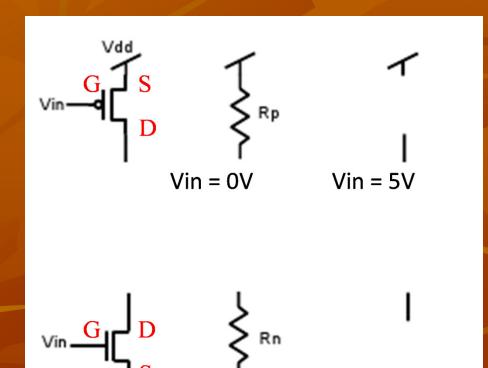
Moore's Law


- An observation named after Gordon E. Moore, co-founder of Intel, who described the trend in his 1965 paper.
- Over the history of computing hardware, the number of transistors in a dense integrated circuit doubles approximately every two years.

Moore's Law

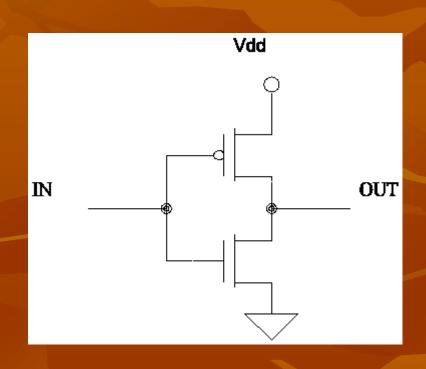
Microprocessor Transistor Counts 1971-2011 & Moore's Law

The Shrinking Transistors



Transistor Basics

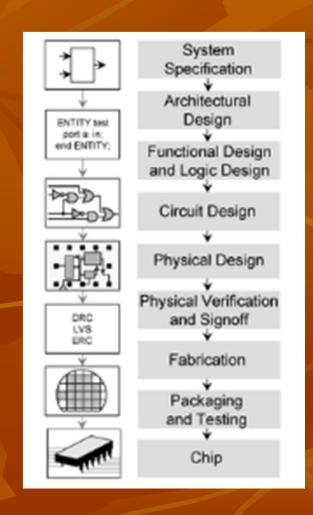
MOSFET – Metal Oxide Field Effect Transistor


Semiconductor Basics

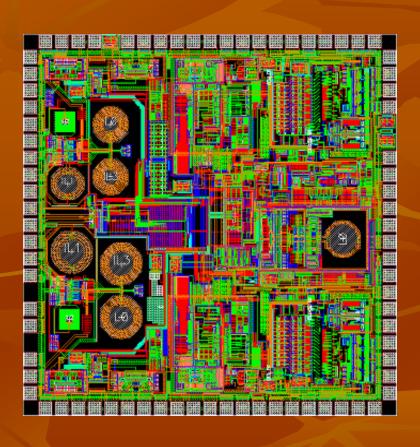
Vin = 5V

Vin = 0V

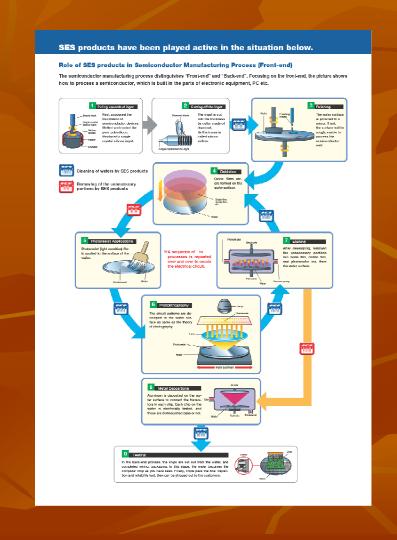
Semiconductor Basics CMOS – Complementary MOS

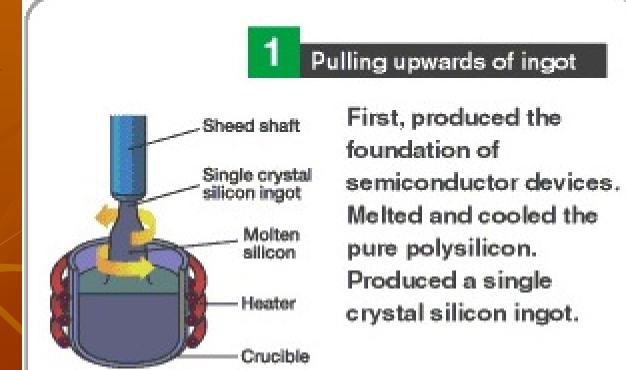


Definition of Integrated Circuit

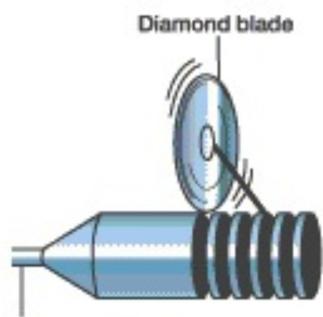

■ Integrated circuit (IC), also called microelectronic circuit or chip, an assembly of electronic components, fabricated as a single unit, in which miniaturized active devices (e.g., transistors and diodes) and passive devices (e.g., capacitors and resistors) and their interconnections are built up on a thin substrate of semiconductor material (typically silicon). The resulting circuit is thus a small monolithic "chip," which may be as small as a few square centimetres or only a few square millimetres. The individual circuit components are generally microscopic in size.

- Encyclopedia Britannica


IC Design Cycle

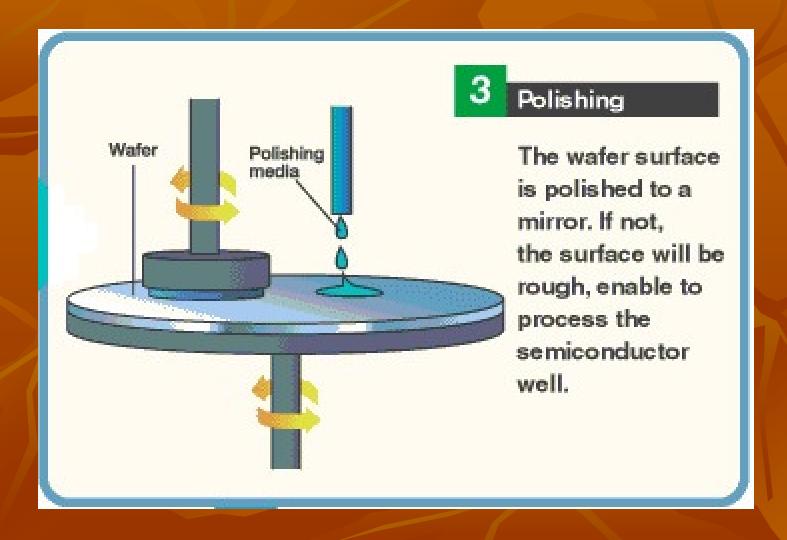

2 Channel GPS Dual Receiver

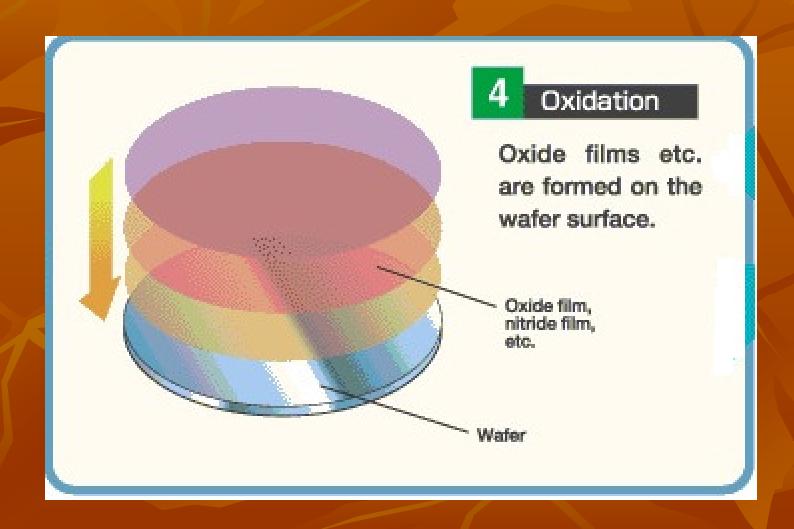
Semiconductor Manufacturing Cycle



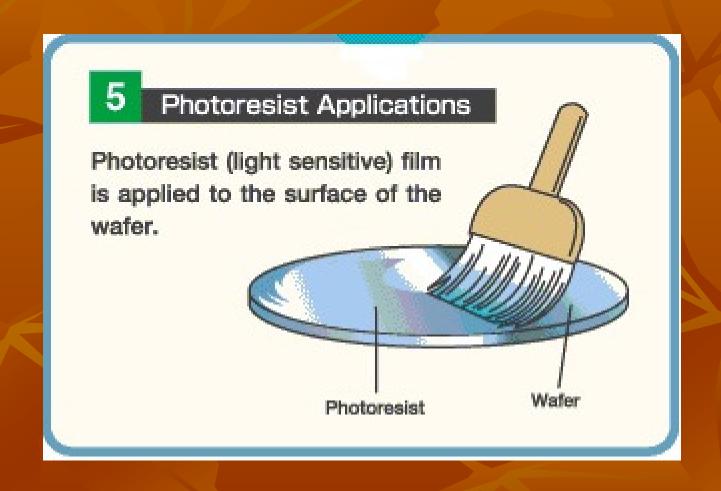
Pulling Upward of Ingots

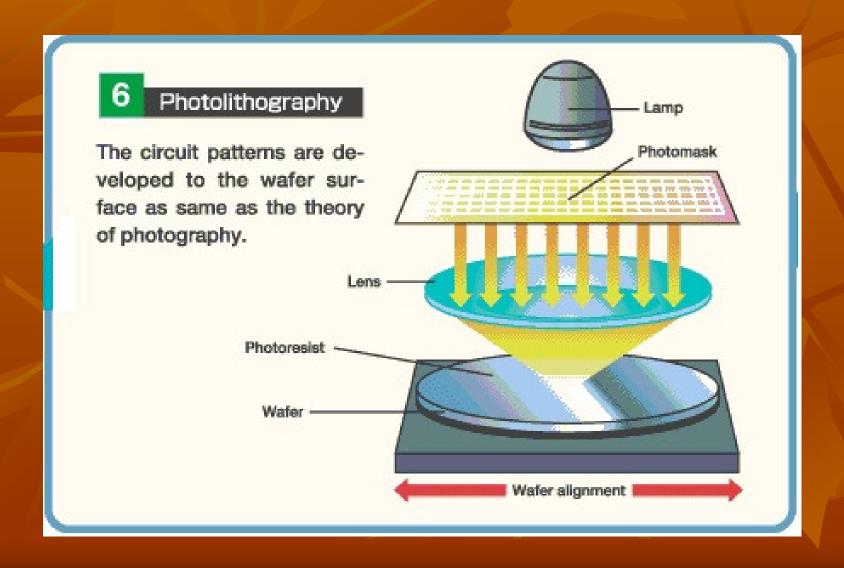
Cutting Off the Ingot

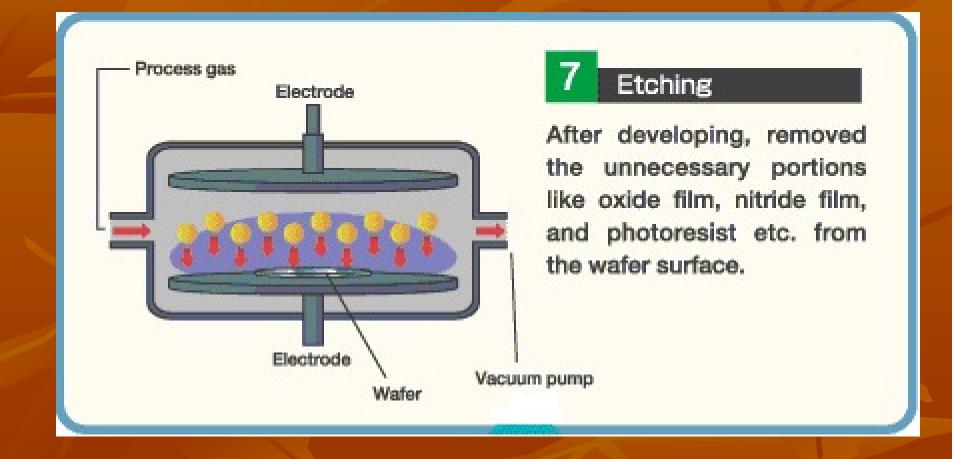

2 Cutting off the Ingot


Single crystal silicon ingot

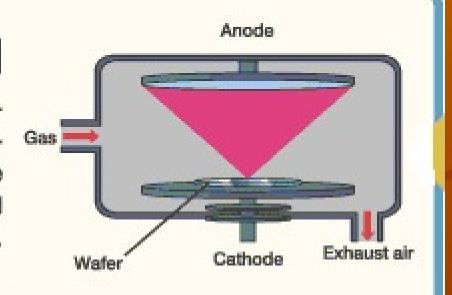
The ingot is cut into the thickness by cutter made of diamond, its thickness is called silicon wafers.


Polishing


Oxidation

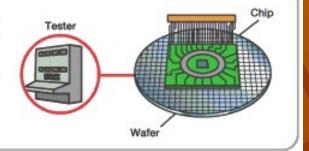

Photoresist Application

Photolithography


Etching

Metal Depositions

8 Metal Depositions


Aluminum is deposited on the wafer surface to connect the transistors in each chip. Each chip on the wafer is electrically tested, and those are distinguished pass or not.

Testing

9 Testing

In the back-end process, the chips are cut out from the wafer, and completed wiring, packaging. In this stage, the wafer becomes the computer chip as you have seen. Finally, chips pass the final inspection and reliability test, then can be shipped out to the customers.

Your Comments and Inputs, Please

- Di Wu
- Champlanguage@gmail.com