
Basic Concepts of Pharmacology in Drug Development

Bob Lyon, PhD Procter and Gamble Healthcare Mason, OH

American Translators Association San Diego, CA October 26, 2012

Agenda

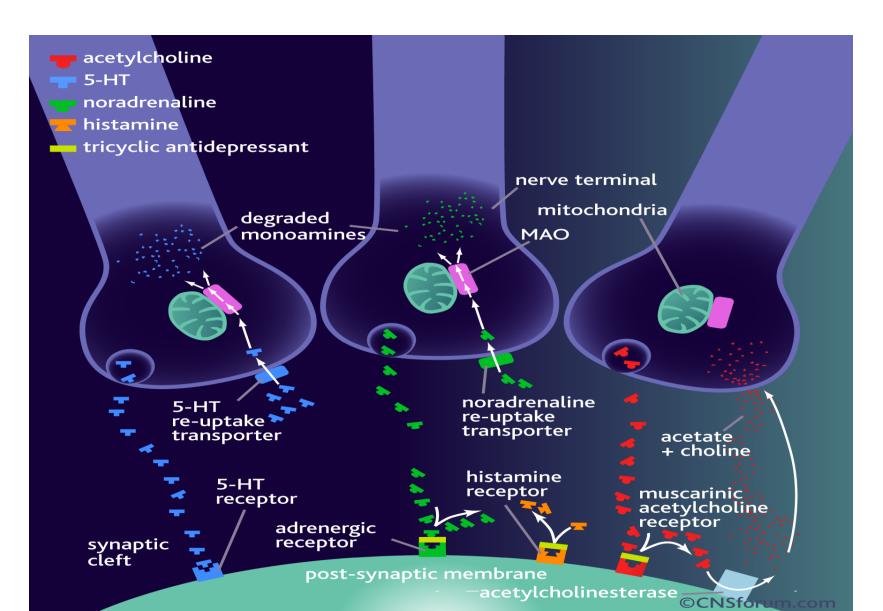
- Overall Goals:
 - Gain an understanding of how drugs work
 - Gain an understanding of pharmacologic theory and practice
 - Gain an understanding of how drugs may be evaluated
- Terminology:
 - Mechanisms of Action
 - Agonists and Antagonists
 - Releasing Agents and Uptake Blockers
 - Potency
 - Efficacy
 - Dose Response
 - Therapeutic Index
 - Radioligand Binding Methods

Overview of Drug Development

- Basic Research:
 - Therapeutic target identified (e.g., 5-HT1A receptor: anxiety)
 - Chemical synthesis of new molecules that are specific for this receptor
 - In vitro screening (high throughput) to identify leads
 - Pharmacology evaluation: agonist, antagonist, potency
 - Lead selection
- Pre-Clinical Development of the Lead:
 - Animal pharmacology
 - Animal safety (rat, dog, monkey)
 - In vitro safety (screening endpoints)
 - Submit an IND (Investigational New Drug Application) to FDA
- Clinical Development:
 - Phase 1 Studies: Pharmacokinetics and initial safety
 - Phase II studies: Proof of Concept and Dose Ranging
 - Phase 3 Studies: Large efficacy/safety studies in intended population
 - File NDA and global submissions
- Phase 4: FDA commitments?
- Time: Up to 10 years. Cost: ca. \$500 million (depends on drug class)

Drug Development: Focus for Today is Basic Research Principles and Terminology

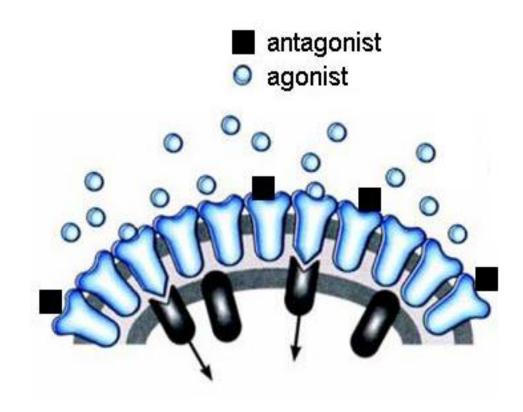
- Basic Research:
 - Therapeutic target identified (e.g., 5-HT1A receptor: anxiety)
 - Chemical synthesis of new molecules that are specific for this receptor
 - In vitro screening (high throughput) to identify leads
 - Pharmacology evaluation: agonist, antagonist, potency
 - Lead selection


Terminology

- <u>Drug</u>: An exogenous substance that brings about a change in biologic function through its chemical action.
 - Phenylephrine, Dextromethorphan, Ibuprofen (OTC)
 - Bisoprolol, Risedronate, Simvastatin (Rx)
- <u>Pharmacology</u>: study of the effects of drugs on the body or system, or "what the drug does to the body"
 - Classical Pharmacology: in vitro/ in vivo testing
 - Molecular Pharmacology: cloned receptors/dna etc.

Drug Mechanisms of Action (MOA)

- Drugs produce their effects in a number of ways:
 - **Receptor-based**: stimulate or block a receptor
 - Phenylephrine activates alpha₁ adrenergic receptors
 - Ipratropium blocks the action of acetylcholine at cholinergic receptors
 - **Releasing Agents**: release neurotransmitter from nerve (cocaine)
 - Re-uptake Blockers: block the re-uptake of NT into nerve
 - Enzyme-based: activate or inhibit an enzyme
 - Monoamine oxidase inhibitors (MAO inhibitors): Iproniazid
 - ACE Inhibitors (anti-hypertensives): Captopril
 - Activate or Inhibit Ionic channels:
 - Calcium channel blockers for hypertension
 - Batrachotoxin: sodium channel activator
 - Genetic Activation/Inhibition:
 - Steroids


Drug Mechanisms of Action

Drug Action

- Agonists:
 - Mimic the action of an endogenous substance
 - Example: Norepinephrine
 - Activate or stimulate a receptor to produce a response
 - May be full agonists or partial agonists
 - Full agonist produces 100% of maximal response
 - Partial agonists produce < 100% of maximal response
 - EC50: dose that produces 50% of maximal response
- Antagonists:
 - Block the action of an endogenous substance
 - Example: Anti-cholinergic agents block acetylcholine
 - Competitive Antagonism: can be overcome (with more agonist)
 - Non-competitive Antagonism: cannot be overcome with more agonist

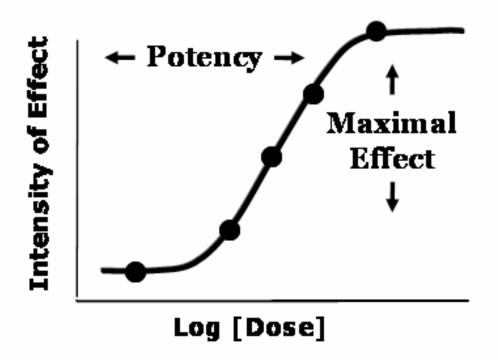
Receptor Agonists and Antagonists

Potency

- Potency: "A much misunderstood concept"
 - Potency is simply a dose-related phenomena
 - Potency has nothing to do with efficacy
 - Potency refers to dose: what dose do I need to get a certain response?
 - A low-potency drug can produce a full or maximal response
 - A very potent drug might only produce a partial response
 - Potency measured as EC50 (dose that produces 50% max response)
 - How can I achieve a maximal agonist response?
 - Give a small dose of a potent compound
 - Give a large dose of a less potent compound
 - Caveat: potent compounds MAY have less potential for side effects
 - Depends on pharmacology of the compound

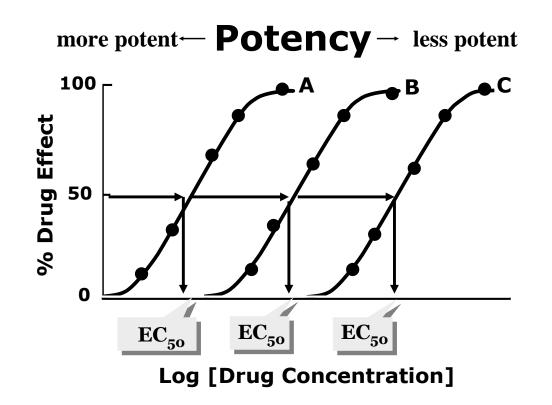
Efficacy

- Efficacy: also a much misunderstood concept
 - Simply the level of response a drug can achieve relative to the maximal effect
 - Not related to potency
 - A full agonist may have low potency
 - A partial agonist may have high potency
 - Efficacy measured as % of full response: Emax
 - Full agonist: 100% response
 - Partial Agonist: < 100% response

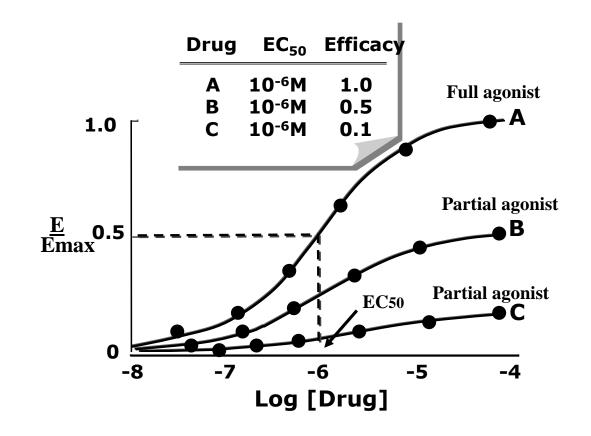

Dose-Response

- Now combine potency and response:
- Dose-Response Concept:
 - Concept that increasing dose will give increasing response
 - Based on Receptor Occupancy Theory
 - A full response will be achieved when all receptors are occupied
 - (Spare Receptor Theory: alternative concept)

The Dose-Response Curve

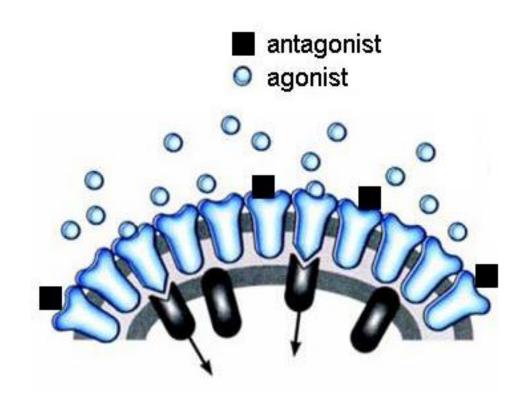

- The concept is that as we increase dose, we increase response
- Dose is plotted on a log scale (x-axis)
- % effect is plotted on the y-axis
- The result is a sigmoidal (S-shaped) curve
- Potency and maximal effect can be determined from this plot

Log Dose-Response Curve


Potency

The potency of a series of drugs may be compared and the EC50 determined. The maximaum achieved effect (Emax) can also be determined.

Partial Agonists


Partial agonists do not produce a full response, but they may have the same potency.

Antagonists

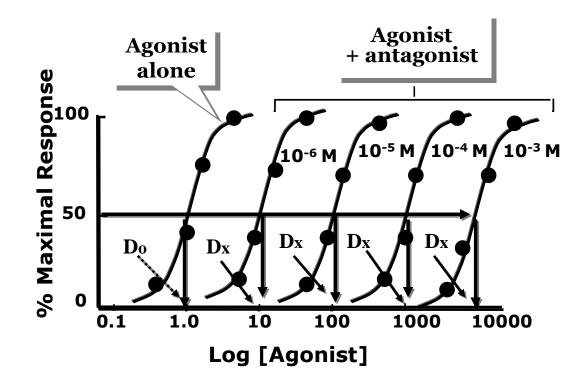
- Block the action of an endogenous substance
 - Example: Anti-cholinergic agents block acetylcholine
- Competitive Antagonism: can be overcome (with more agonist)
- Non-competitive Antagonism: cannot be overcome with more agonist

Antagonists: Block an Effect

Antagonists

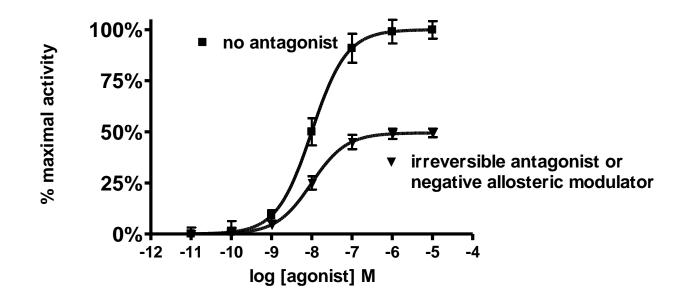
Some questions for understanding:

What is the dose-response for an antagonist?

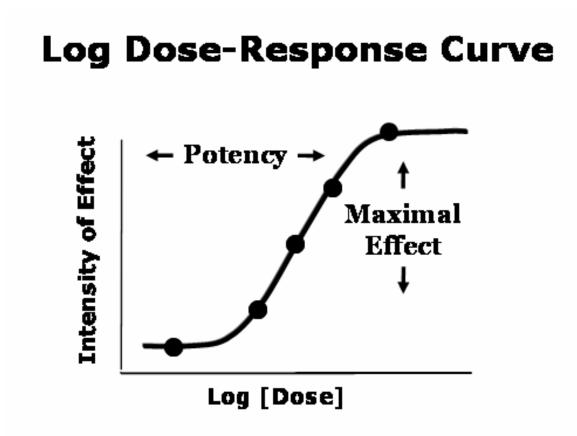

What does that dose-response look like?

What is the EC50 and Emax of an antagonist?

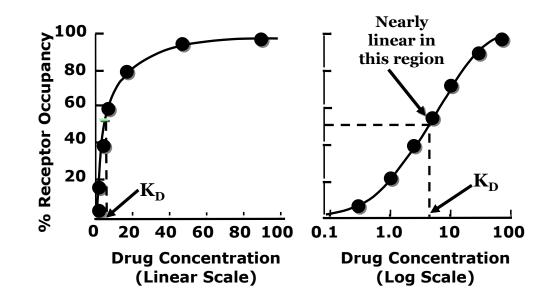
Competitive Antagonists


Shift the agonist dose-response curve. Emax remains the same.

Competitive Antagonism


Non-Competitive Antagonism

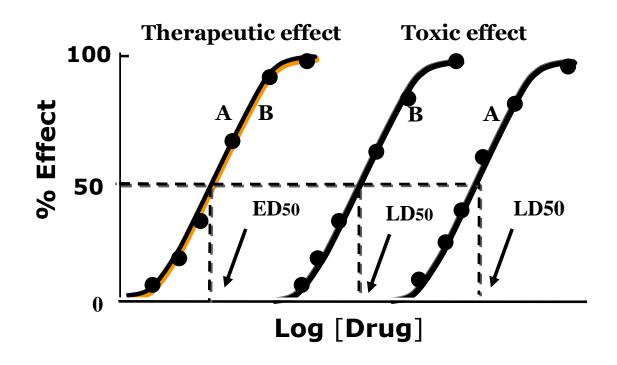
Non-competitive antagonists decrease the Emax.


Negative allosteric modulators and irreversible antagonists reduce the maximal effect of an agonist

Log-Dose Response Curve Relating this to Receptor Occupancy

Receptor Occupancy Predicts Response

Receptor Occupancy



Receptor Occupancy Theory

- Progressive response with progressive receptor occupancy
- 10% occupancy = 10% effect
- 50% occupancy = 50% effect
- 100% occupancy = 100% effect
- Does not explain partial agonists
 - Spare receptor theory
 - Receptor coupling
 - Agonist high and low affinity states

Therapeutic Index: Combining a Therapeutic and a Toxic Dose Response ED50 and LD50

Therapeutic Index = LD_{50}/ED_{50}

Radioligand Binding Methods: Studying Receptor Pharmacology

- High affinity (high potency) compound or drug
 - Selective or specific for a given receptor
 - Radio-labeled (tritium, iodine etc)
- Incubated with tissue/cells that express the given receptor
 Radio-labeled drug binds to the receptor population
- Test drugs "compete" for this binding
- Assay the loss of radiolabelled drug
 - Calculate potency of competing drug
 - IC50 values; Ki values

Radioligand Binding Competition Study

• Yohimbine competing for 3H-UK14304 at alpha2 receptors

Log [competitor](M)	Binding (cpm) in triplicate		g 5000
[competitor](M) -12.0 -10.0 -9.5 -9.0 -8.5 -8.0 -7.5 -7.0 -6.5 -6.0 -5.5 -5.0	in triplica 4549 4380 4604 4803 4353 4278 4192 4156 4053 4420 3453 3018 2587 2946 1295 1405 886 880 591 612 580 559 521 545	4554 4213 4508 3972 4191 3024 2367	Punoq 4000 - 4000 -

Pharmacology Evaluations

- Radioligand Binding Studies:
 - Can determine "affinity" for receptor
- In vitro Pharmacology:
 - Can determine agonist/antagonist, potency and efficacy of a test drug
- In vivo Pharmacology:
 - Can determine full pharmacology profile of a test drug
 - Animals don't talk: need clinical data to determine full response profile
 - Especially true for psychoactive drugs
- Clinical Studies:
 - Effects of drugs on people and populations
 - Animals do not speak; subtle effects of a drug may be missed in animal studies
 - Especially true for psychoactive drugs, which we will discuss next

Overall Drug Development Process

- Basic Research:
 - Therapeutic target identified (e.g., 5-HT1A receptor: anxiety)
 - Chemical synthesis of new molecules that are specific for this receptor
 - In vitro screening (high throughput) to identify leads
 - Pharmacology evaluation: agonist, antagonist, potency
 - Lead selection
- Pre-Clinical Development of the Lead:
 - Animal pharmacology
 - Animal safety (rat, dog, monkey)
 - In vitro safety (screening endpoints)
 - Submit an IND (Investigational New Drug Application) to FDA
- Clinical Development:
 - Phase 1 Studies: Pharmacokinetics and initial safety
 - Phase II studies: Proof of Concept and Dose Ranging
 - Phase 3 Studies: Large efficacy/safety studies in intended population
 - File NDA and global submissions
- Phase 4: FDA commitments?
- Time: Up to 10 years. Cost: ca. \$500 million (depends on drug class)

Questions?